Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.505
Filtrar
1.
Mycology ; 15(1): 57-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558840

RESUMEN

Candida albicans is one of the most common opportunistic fungi in cancer patients. This study explored the influence of C. albicans on gut microbiota in oral tumour-bearing mice by means of 16S rRNA sequencing and ITS sequencing. It was found that C. albicans infection induced the decrease of alpha diversity of bacteria and fungi in the gut microbiome. For the bacteria, C. albicans caused the reduction of Ralstonia, Alistipes, Clostridia UCG-014, Ruminococcus, and Lachnospiraceae NK4A136 group. For the fungi, C. albicans inhibited the growth of other fungi including Aspergillus, Cladosporium, and Bipolaris. The neutralisation of γδT cells partly alleviated the out-of-balance of Firmicutes/Bacteroidota (F/B) ratio in the gut caused by C. albicans infection. However, γδT cell neutralisation boosted the overgrowth of C. albicans. Additionally, IL-17A neutralisation aggravated the microbial dysbiosis of bacteria and fungi caused by C. albicans infection. Further analysis indicated that C. albicans overgrowth might influence the correlations between fungal and bacterial kingdoms. In conclusion, C. albicans infection disturbed the gut microbiota of both bacteria and fungi in oral tumour-bearing mice, which may be associated with the intestinal immune components including γδT cells and IL-17A.

2.
Digit Health ; 10: 20552076241240905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559579

RESUMEN

Background: Early detection and treatment are crucial for reducing gastrointestinal tumour-related mortality. The diagnostic efficiency of the most commonly used diagnostic markers for gastric cancer (GC) is not very high. A single laboratory test cannot meet the requirements of early screening, and machine learning methods are needed to aid the early diagnosis of GC by combining multiple indicators. Methods: Based on the XGBoost algorithm, a new model was developed to distinguish between GC and precancerous lesions in newly admitted patients between 2018 and 2023 using multiple laboratory tests. We evaluated the ability of the prediction score derived from this model to predict early GC. In addition, we investigated the efficacy of the model in correctly screening for GC given negative protein tumour marker results. Results: The XHGC20 model constructed using the XGBoost algorithm could distinguish GC from precancerous disease well (area under the receiver operating characteristic curve [AUC] = 0.901), with a sensitivity, specificity and cut-off value of 0.830, 0.806 and 0.265, respectively. The prediction score was very effective in the diagnosis of early GC. When the cut-off value was 0.27, and the AUC was 0.888, the sensitivity and specificity were 0.797 and 0.807, respectively. The model was also effective at evaluating GC given negative conventional markers (AUC = 0.970), with the sensitivity and specificity of 0.941 and 0.906, respectively, which helped to reduce the rate of missed diagnoses. Conclusions: The XHGC20 model established by the XGBoost algorithm integrates information from 20 clinical laboratory tests and can aid in the early screening of GC, providing a useful new method for auxiliary laboratory diagnosis.

3.
Heliyon ; 10(7): e28405, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560178

RESUMEN

Inactivated coronavirus disease 2019 (COVID-19) vaccines showed impaired immunogenicity in some autoimmune diseases, but it remains unclear in primary biliary cholangitis (PBC). This study aimed to explore the antibody response to the inactivated COVID-19 vaccine in individuals with PBC, as well as to evaluate coverage, safety, and attitudes toward the COVID-19 vaccine among them. Two cohorts of patients with PBC were enrolled in this study. One cohort was arranged to evaluate the immunogenicity of the inactivated COVID-19 vaccine, another cohort participated in an online survey. The titers of the anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG), neutralizing antibody (NAb) toward severe acute respiratory syndrome coronavirus 2 wild-type, and NAb toward Omicron BA.4/5 subvariants were detected to assess antibody response from the vaccine. After booster vaccination for more than six months, patients with PBC had significantly lowered levels of anti-RBD-specific IgG compared to HCs, and the inhibition rates of NAb toward wild-type also declined in individuals with PBC. The detected levels of NAb toward Omicron BA.4/5 were below the positive threshold in patients with PBC and HCs. Laboratory parameters did not significantly correlate with any of the three antibodies. The online survey revealed that 24% of patients with PBC received three COVID-19 vaccines, while 63% were unimmunized. Adverse effect rates after the first, second, and third vaccine doses were 6.1%, 10.3%, and 9.5%, respectively. Unvaccinated patients with PBC were more worried about the safety of the vaccine than those who were vaccinated (P = 0.004). As a result, this study fills the immunological assessment gap in patients with PBC who received inactivated COVID-19 vaccines.

4.
Genes Dis ; 11(4): 100994, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38560504

RESUMEN

The tumor suppressor p53 is the most common mutated gene in cancer, with the R175H as the most frequent p53 missense mutant. However, there are currently no approved targeted therapies or immunotherapies against mutant p53. Here, we characterized and investigated a monoclonal antibody (mAb) that recognizes the mutant p53-R175H for its affinity, specificity, and activity against tumor cells in vitro. We then delivered DNA plasmids expressing the anti-R175H mAb or a bispecific antibody (BsAb) into mice to evaluate their therapeutic effects. Our results showed that the anti-R175H mAb specifically bound to the p53-R175H antigen with a high affinity and recognized the human mutant p53-R175H antigen expressed on HEK293T or MC38 cells, with no cross-reactivity with wild-type p53. In cultured cells, the anti-R175H mAb showed higher cytotoxicity than the control but did not induce antibody-dependent cellular cytotoxicity. We made a recombinant MC38 mouse cell line (MC38-p53-R175H) that overexpressed the human p53-R175H after knocking out the endogenous mutant p53 alleles. In vivo, administration of the anti-R175H mAb plasmid elicited a robust anti-tumor effect against MC38-p53-R175H in mice. The administration of the anti-R175H BsAb plasmid showed no therapeutic effects, yet potent anti-tumor activity was observed in combination with the anti-PD-1 antibody. These results indicate that targeting specific mutant epitopes using DNA-delivered mAbs or BsAbs presents a form of improved natural immunity derived from tumor-infiltrating B cells and plasma cells against intracellular tumor antigens.

5.
J Pharmacol Exp Ther ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565308

RESUMEN

Bromine domain protein 2 (BRD2), a member of the Bromodomain and extraterminal domain (BET) protein family, is a crucial epigenetic regulator with significant function in various diseases and cellular processes. The central function of BRD2 is modulating gene transcription by binding to acetylated lysine residues on histones and transcription factors. This review highlights key findings on BRD2 in recent years, emphasizing its roles in maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. BRD2's diverse functions are underscored by its involvement in diseases such as malignant tumor, neurological disorders, inflammatory conditions, metabolic diseases, and virus infection. Notably, the potential role of BRD2 as a diagnostic marker and therapeutic target is discussed in the context of various diseases. While pan-inhibitors targeting the BET family have shown promise in preclinical studies, a critical need exists for the development of highly selective BRD2 inhibitors. In conclusion, this review offers insights into the multifaceted nature of BRD2 and calls for continued research to unravel its intricate mechanisms and harness its therapeutic potential. Significance Statement BRD2 is involved in the occurrence and development of diseases through maintaining genomic stability, influencing chromatin spatial organization, and participating in transcriptional regulation. Targeting BRD2 through Protein Degradation Targeting Complexes (PROTAC) technology is emerging as a promising therapeutic approach for malignant cancer and inflammatory diseases.

6.
Infection ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568411

RESUMEN

PURPOSE: To evaluate the efficacy and safety of oral ibrexafungerp (HS-10366) versus placebo in Chinese patients with vulvovaginal candidiasis (VVC). METHODS: A double-blind, placebo-controlled, randomized, multicenter phase III study was conducted in symptomatic VVC patients. Patients received (2:1) twice-daily oral ibrexafungerp 300 mg or matching placebo for 1 day. The primary endpoint was clinical cure (vulvovaginal signs and symptoms [VSS] score = 0) at test-of-cure (TOC) on day 11 ± 3. The secondary endpoints included mycological eradication, overall response, and clinical improvement (VSS score ≤ 1) at TOC, and vulvovaginal symptom resolution at follow-up on day 25 ± 4. RESULTS: In total, 360 patients were included in the modified intention-to-treat set (defined as positive Candida cultured and receiving at least one study drug; 239 for ibrexafungerp, 121 for placebo). Compared with placebo, patients receiving ibrexafungerp had a significantly higher proportion of clinical cure (51.0% vs. 25.6%), mycological eradication (55.6% vs. 18.2%), overall response (33.9%, vs. 8.3%) at TOC and complete symptom resolution (74.5% vs. 39.7%, all P < 0.001) at follow-up. Subgroup analysis of clinical cure indicated that patients with C. albicans could benefit from ibrexafungerp over placebo. A similar benefit trend was also observed in those with non-albicans Candida by post-hoc analysis. Further analyses revealed similar efficacy of ibrexafungerp between patients with fluconazole non-susceptible C. albicans and fluconazole susceptible C. albicans regarding clinical cure and mycological eradication. Ibrexafungerp was generally well tolerated. Adverse events were primarily gastrointestinal and were mainly mild in severity. CONCLUSIONS: As a first-in-class antifungal agent, ibrexafungerp demonstrated promising efficacy and favorable safety for VVC treatment in Chinese patients. CHINADRUGTRIALS.ORG. CN REGISTRY NUMBER: CTR20220918.

7.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562851

RESUMEN

The best-known mode of action of calmodulin (CaM) is binding of Ca 2+ to its N- and C-domains, followed by binding to target proteins. An underappreciated facet of this process is that CaM is typically bound to proteins at basal levels of free Ca 2+ , including the small, intrinsically disordered, neuronal IQ-motif proteins called PEP-19 and neurogranin (Ng). PEP-19 and Ng would not be effective competitive inhibitors of high-affinity Ca 2+ -dependent CaM targets at equilibrium since they bind to CaM with relatively low affinity, but they could influence the time course of CaM signaling by affecting the rate of association of CaM with high-affinity Ca 2+ -dependent targets. This mode of regulation may domain specific since PEP-19 binds to the C-domain of CaM, while Ng binds to both N- and C-domains. In this report, we used a model CaM binding peptide (CKIIp) to characterize the preferred pathway of complex formation with Ca 2+ -CaM at low levels of free Ca 2+ (0.25 to 1.5 µM), and how PEP-19 and Ng affect this process. We show that the dominant encounter complex involves association of CKIIp with the N-domain of CaM, even though the C-domain has a greater affinity for Ca 2+ . We also show that Ng greatly decreases the rate of association of Ca 2+ -CaM with CKIIp due to the relatively slow dissociation of Ng from CaM, and to interactions between the Gly-rich C-terminal region of Ng with the N-domain of CaM, which inhibits formation of the preferred encounter complex with CKIIp. These results provide the general mechanistic paradigms that binding CaM to targets can be driven by its N-domain, and that low-affinity regulators of CaM signaling have the potential to influence the rate of activation of high-affinity CaM targets and potentially affect the distribution of limited CaM among multiple targets during Ca 2+ oscillations. STATEMENT OF SIGNIFICANCE: Calmodulin is a small, essential regulator of multiple cellular processes including growth and differentiation. Its best-known mode of action is to first bind calcium and then bind and regulate the activity of target proteins. Each domain of CaM has distinct calcium binding properties and can interact with targets in distinct ways. We show here that the N-domain of calmodulin can drive its association with targets, and that a small, intrinsically disordered regulator of calmodulin signaling called neurogranin can greatly decrease the rate of association of CaM with high-affinity Ca 2+ -dependent targets. These results demonstrate the potential of neurogranin, and potentially other proteins, to modulate the time course of activation of targets by a limited intracellular supply of calmodulin.

8.
Front Cell Infect Microbiol ; 14: 1372779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596652

RESUMEN

Aflatoxins (AFs) are produced by fungi such as Aspergillus flavus and A. parasiticus and are one of the most toxic mycotoxins found in agricultural products and food. Aflatoxin contamination, which requires the control of A. flavus, remains problematic because of the lack of effective strategies and the exploration of new compounds that can inhibit A. flavus growth and mycotoxin production is urgently required to alleviate potential deleterious effects. Acetohydroxy acid synthase (AHAS) and dihydroxy acid dehydratase are important enzymes in the biosynthetic pathways of branched-chain amino acids (BCAAs), including isoleucine, leucine, and valine. Enzymes involved in BCAA biosynthesis are present in bacteria, plants, and fungi, but not in mammals, and are therefore, attractive targets for antimicrobial and herbicide development. In this study, we characterized AflaILVB/G/I and AflaILVD, which encode the catalytic and regulatory subunits of AHAS and dihydroxy acid dehydratase, from the pathogenic fungus Aspergillus flavus. The AflaILVB/G/I and AflaILVD deletion mutant grew slower and produced smaller colonies than the wild-type strain when grown on glucose minimal medium, potato dextrose agar, and yeast extract medium for three days at 28°C, and disruption of AflaILVB/G/I caused a significant reduction in conidia production when grown on all kinds of media. Cellular stress assays determined that all strains were sensitive to H2O2. Importantly, the pathogenicity and aflatoxin production were affected when AflaILVB/G/I and AflaILVD were knocked out, particularly AflaILVB/G/I. A series of genes that encoded enzymes involved in aflatoxin synthesis were downregulated, meaning that the knockout of AflaILVB/G/I influenced aflatoxin synthesis in A. flavus strain WT. Collectively, our results demonstrate the potential value of antifungals targeting AflaILVB/G/I in A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Animales , Aspergillus flavus/genética , Virulencia , Peróxido de Hidrógeno/metabolismo , Hidroliasas , Mamíferos
9.
Br J Cancer ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594370

RESUMEN

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.

10.
Adv Sci (Weinh) ; : e2308986, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588510

RESUMEN

Activating autologous stem cells after the implantation of biomaterials is an important process to initiate bone regeneration. Although several studies have demonstrated the mechanism of biomaterial-mediated bone regeneration, a comprehensive single-cell level transcriptomic map revealing the influence of biomaterials on regulating the temporal and spatial expression patterns of mesenchymal stem cells (MSCs) is still lacking. Herein, the osteoimmune microenvironment is depicted around the classical collagen/nanohydroxyapatite-based bone repair materials via combining analysis of single-cell RNA sequencing and spatial transcriptomics. A group of functional MSCs with high expression of matrix Gla protein (Mgp) is identified, which may serve as a pioneer subpopulation involved in bone repair. Remarkably, these Mgp high-expressing MSCs (MgphiMSCs) exhibit efficient osteogenic differentiation potential and orchestrate the osteoimmune microenvironment around implanted biomaterials, rewiring the polarization and osteoclastic differentiation of macrophages through the Mdk/Lrp1 ligand-receptor pair. The inhibition of Mdk/Lrp1 activates the pro-inflammatory programs of macrophages and osteoclastogenesis. Meanwhile, multiple immune-cell subsets also exhibit close crosstalk between MgphiMSCs via the secreted phosphoprotein 1 (SPP1) signaling pathway. These cellular profiles and interactions characterized in this study can broaden the understanding of the functional MSC subpopulations at the early stage of biomaterial-mediated bone regeneration and provide the basis for materials-designed strategies that target osteoimmune modulation.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38591199

RESUMEN

OBJECTIVE: To explore the mechanism of KLF15 on the biological activity and autophagy of gastric cancer cells based on the PI3K/Akt/mTOR signaling pathway. MATERIAL AND METHODS: The gastric cancer AGS cells were divided into the Con group, pcDNANC group, pcDNA-KLF15 group, LY294002 group and IGF-1 group. RT-PCR was used to detect the expression of KLF15 in human gastric mucosal cells and gastric cancer cells; MTT method to detect cell proliferation; Transwell method to detect cell invasion; flow cytometry to detect cell apoptosis; Western blotting to detect PI3K, Akt, mTOR in cells, LC3, Beclin1, p62 protein expression.P<0.05 was used to indicate statistical significance. RESULTS: Compared with the human gastric mucosal cell line GES-1 cells, the expression of KLF15 in human gastric cancer cell lines MKN-28, MFC, SCG-7901 and AGS cells was significantly decreased, And the expression of KLF15 in AGS cells, was the lowest (P=0.006). Compared with the Con group, The expression of KLF15 in the cells of the PCDNA-KLF15 group was significantly increased (P=0.018); There was no significant difference in the expression of KLF15 between the Con group and the PCDNA-NC group (P=0.225). Compared with the Con group, the proliferation and invasion abilities of the cells in the pcDNA-KLF15 group were significantly reduced, And the apoptosis ability was significantly increased (P=0.019). The ratio of LC3II/LC31 and the expression of Beclin1 Protein in the control group were significantly higher than those in the Con group (P=0.017). CONCLUSION: Overexpression of KLF15 can inhibit the proliferation and invasion of Gastric cancer cells and promote cell apoptosis and autophagy, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR signaling pathway.

12.
Ergonomics ; : 1-20, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592045

RESUMEN

Studies have demonstrated two-stage takeover systems' feasibility and advantages. However, existing cognitive models mainly focus on simulating drivers' performance in single-stage takeover systems, with limited insights into cognitive modelling of effects of monitoring requests (MRs) within two-stage takeover systems. This study constructed a cognitive computational model for two-stage takeover systems based on queueing network-adaptive control of thought rational (QN-ACTR) architecture. Our model aims to capture variations in drivers' attention allocation and takeover performance resulting from different MR experiences. Five components, representing distinct cognitive processes, were designed to closely align with drivers' behavioural patterns. This model was validated through an experiment using metrics such as percentage time in road-centre and takeover time. Results revealed significant concordance between the model predictions and experimental data, with R-squared ≥ 0.76, RMSE ≤ 0.41, and MAPE ≤ 15%. The findings of this work extended beyond the two-stage takeover system investigation to include human factor modelling.


To provide insights into modelling the effects of monitoring requests in two-stage takeover systems, a cognitive computational model was developed to simulate driver behaviour. An experiment was conducted to validate the model's predictive performance. The quantisation relation between warning signals and driver performance can be calculated through the proposed model.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38592427

RESUMEN

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.

14.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583031

RESUMEN

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Asunto(s)
Dinoprostona , Periodontitis , Humanos , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Osteoblastos/metabolismo , Osteogénesis , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167159, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583815

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy is regarded as a potent immunotherapy and has made significant success in hematologic malignancies by eliciting antigen-specific immune responses. However, response rates of CAR-T cell therapy against solid tumors with immunosuppressive microenvironments remain limited. Co-engineering strategies are advancing methods to overcome immunosuppressive barriers and enhance antitumor responses. Here, we engineered an IL-2 mutein co-engineered CAR-T for the improvement of CAR-T cells against solid tumors and the efficient inhibition of solid tumors. We equipped the CAR-T cells with co-expressing both tumor antigen-targeted CAR and a mutated human interleukin-2 (IL-2m), conferring enhanced CAR-T cells fitness in vitro, reshaped immune-excluded TME, enhanced CAR-T infiltration in solid tumors, and improved tumor control without significant systemic toxicity. Overall, this subject demonstrates the universal CAR-T cells armed strategy for the development and optimization of CAR-T cells against solid tumors.

16.
Surg Infect (Larchmt) ; 25(3): 247-252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588519

RESUMEN

Background: The prevalence of community-onset infections of extended spectrum ß-lactamase (ESBL)-producing strains has increased globally, yet surveillance and resistance in patients with oral and maxillofacial surgery site infections is less investigated. Patients and Methods: A retrospective cohort study was performed to investigate risk factors and resistance of ESBL-producing Escherichia coli (ESBL-EC) and ESBL-producing Klebsiella pneumonia (ESBL-KP) among community-onset patients with oral and maxillofacial surgery during January 2010 to December 2016. Demographic features, predisposing factors, clinical outcomes, and antibiotic agent costs were analyzed. Antimicrobial susceptibility testing of nine antimicrobial agents against ESBL-KP and ESBL-EC were measured. Results: Among 2,183 cultures from infection sites in patients with oral and maxillofacial surgery site (45 cases [2.06%]) were confirmed with community-onset ESBL-KP (24; 1.10%) or ESBL-EC (21; 0.96%) infection. Multivariable analysis showed the independent risk factors for ESBL-producing bacterial infection were prior history of hospitalization (adjusted odds ratio [aOR], 10.984; 95% confidence interval [CI], 5.965-59.879; p = 0.025) and malignant condition (aOR, 3.373; 95% CI 2.947-7.634; p = 0.024). Based on antimicrobial susceptibility testing, 57.8% ESBL-KP and ESBL-EC were found receiving inappropriate antimicrobial therapy, and antibiotic agent costs were higher than non-ESBL-producing bacterial infections ($493.8 ± $367.3 vs. $304.1 ± $334.7; p = 0.031). Conclusions: Infections caused by ESBL-KP and ESBL-EC among patients in sites with oral and maxillofacial surgery are associated with prior history of hospitalization and malignant conditions. Prompt detection and appropriate antibiotic administration for community-onset infections of ESBLs are necessary for such populations.


Asunto(s)
Infecciones por Escherichia coli , Infecciones por Klebsiella , Neumonía , Humanos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Estudios Retrospectivos , beta-Lactamasas , Escherichia coli , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Factores de Riesgo , Klebsiella , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de la Herida Quirúrgica/epidemiología
17.
Adv Sci (Weinh) ; : e2401667, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627981

RESUMEN

Constructing heterojunctions with vacancies has garnered substantial attention in the field of piezo-photocatalysis. However, the presence of interfacial vacancies can serve as charge-trapping sites, leading to the localization of electrons and hindering interfacial charge transfer. Herein, dual oxygen vacancies in the NiFe-layered double hydroxide and Bi2MoO6- x induced interfacial bonds have been designed for the piezo-photocatalytic N2 oxidation to NO3 -. Fortunately, it achieves sensational nitric acid production rates (7.23 mg g-1 h-1) in the absence of cocatalysts and sacrificial agents, which is 6.03 times of pure Bi2MoO6 that under ultrasound and light illumination. Theoretical and experimental results indicate that interfacial bonds act as "charge bridge" and "strain center" to break the carrier local effect and negative effects with piezocatalysis and photocatalysis for promoting exciton dissociation and charge transfer. Moreover, the strong electronic interaction of the interfacial bond induces internal reconstruction under ultrasound for promoting the local polarization and adsorption of N2, which accelerates the fracture of the N≡N bonds and reduces the activation energy of the reaction. The research not only establishes a novel approach for optimizing the combined effects of piezo-catalysis and photocatalysis, but also achieves equilibrium between the synergistic impacts of vacancies and heterojunctions.

18.
Analyst ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629585

RESUMEN

Non-targeted analysis of high-resolution mass spectrometry (MS) can identify thousands of compounds, which also gives a huge challenge to their quantification. The aim of this study is to investigate the impact of mass spectrometry ionization efficiency on various compounds in food at different solvent ratios and to develop a predictive model for mass spectrometry ionization efficiency to enable non-targeted quantitative prediction of unknown compounds. This study covered 70 compounds in 14 different mobile phase ratio environments in positive ion mode to analyze the rules of the matrix effect. With the organic phase ratio from low to high, most compounds changed by 1.0 log units in log IE. The addition of formic acid enhanced the signal but also promoted the matrix effect, which often occurred in compounds with strong ionization capacity. It was speculated that the matrix effect was mainly in the form of competitive charge and charged droplet' gasification sites during MS detection. Subsequently, we present a log IE prediction method built using the COSMO-RS software and the artificial neural network (ANN) algorithm to address this difficulty and overcome the shortcomings of previous models, which always ignore the matrix effect. This model was developed following the principles of QSAR modeling recommended by the Organization for Economic Cooperation and Development (OECD). Furthermore, we validated this approach by predicting the log IE of 70 compounds, including those not involved in the log IE model development. The results presented demonstrate that the method we put forward has an excellent prediction accuracy for log IE (R2pred = 0.880), which means that it has the potential to predict the log IE of new compounds without authentic standards.

19.
J Youth Adolesc ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622471

RESUMEN

It is widely known controversies about the results of violent video game increase aggression. However, the role of competitive video games, has received less research attention, and the underlying mechanisms of their influence are unknown. This study aimed to expand the existing literature by systematically exploring the effects of competitive video game exposure on adolescent aggression and the mediating role of impulsivity. In so doing, three types of studies (collectively N = 2919, mean age varied from 13.75 to 15.44 years, with a balanced gender) combining cross-sectional, experimental, and longitudinal approaches, were conducted. The findings consistently show that competitive video game exposure increased adolescents' aggression and impulsivity. Also, impulsivity mediated the correlation and long-term effect of competitive video game exposure on aggression. However, the experimental study did not confirm the short-term mediating effect of impulsivity, which may be related to the type of aggression measured in the study. The results indicate that competitive video game exposure is an important antecedent factor for adolescent aggression, and impulsivity is the key underlying mechanism.

20.
J Ethnopharmacol ; 328: 118131, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38565408

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY: The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS: The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS: ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION: Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Mesalamina/efectos adversos , Cromatografía Liquida , Interleucina-17/metabolismo , Espectrometría de Masas en Tándem , Colon , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Factores de Transcripción/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...